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This article explores the notion that Freudian constructs may have neurobiological substrates. Specifically, we propose that
Freud's descriptions of the primary and secondary processes are consistent with self-organized activity in hierarchical cortical
systems and that his descriptions of the ego are consistent with the functions of the default-mode and its reciprocal exchanges
with subordinate brain systems. This neurobiological account rests on a view of the brain as a hierarchical inference or
Helmholtz machine. In this view, large-scale intrinsic networks occupy supraordinate levels of hierarchical brain systems that
try to optimize their representation of the sensorium. This optimization has been formulated as minimizing a free-energy; a
process that is formally similar to the treatment of energy in Freudian formulations. We substantiate this synthesis by showing
that Freud's descriptions of the primary process are consistent with the phenomenology and neurophysiology of rapid eye
movement sleep, the early and acute psychotic state, the aura of temporal lobe epilepsy and hallucinogenic drug states.
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the primary and secondary processes (as functions of the id
and ego respectively) fit comfortably with modern notions of func-

Introduction

In this synthesis we explore the notion that Freudian constructs
may have real neurobiological substrates and could be usefully
revisited in the context of modern neuroscience. It is worth
noting that Freud had a formal training in neuroanatomy and
was influenced by people like Helmholtz, who laid many of the
foundations for theoretical neurobiology. Advances in empirical
and theoretical neuroscience now allow us to recast some central
Freudian ideas in a mechanistic and biologically informed fashion.
Specifically, we note that the psychoanalytic distinction between

tional brain architecture, at both a computational and neuro-
physiological level. Although this may seem a rather abstract
and ambitious synthesis, there is in fact an enormous amount
of empirical evidence from neuropsychology, neuroimaging and
psychopharmacology to support it.

In what follows we attempt to demonstrate consistencies
between key Freudian ideas and recent perspectives on global
brain function that have emerged in imaging and theoretical
neuroscience. The intention is to demonstrate and develop the
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construct validity of the Freudian concepts. This should allow
Freudian concepts to be operationalized and measured empirically
and could enable a dialogue between psychoanalysts and neuro-
biologists. This may have implications for psychiatry to the extent
that mechanistic theories of psychopathology appeal to either
neurobiological or psychoanalytical constructs. We start by sum-
marizing the key elements of the three areas that we want to
relate to each other; namely the central Freudian constructs, the
Helmholtzian or Bayesian brain framework and empirical findings
from neuroimaging on the global organization of brain activity.

The primary and secondary
process

Freud came to a realization that there are two fundamentally dif-
ferent modes of cognition (the primary and secondary process)
through a study of ‘altered’ or ‘non-ordinary’ states of
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consciousness (e.g. Q115, Q333 and Q462 in Supplementary
material). He recognized in certain non-ordinary states (e.g.
dreaming and psychosis) a mode of cognition that is characterized
by a primitive, animistic style of thinking. Freud conjectured that
the exchange of neuronal energy is relatively ‘free’ in this mode
and he named this the ‘primary process’. Simultaneously, Freud
recognized in non-ordinary states the loss of certain functions,
which are normally present in waking cognition. He ascribed
these functions to a central organization (the ego) which works
to minimize the mind's free-energy. Freud named this function the
‘secondary process’ and defined its aim as one of converting ‘free
energy' into 'bound energy' (for a more thorough discussion of
these central concepts of Freudian theory see the supporting
quotes in the online Supplementary material, cited in Table 1):

We seem to recognize that nervous or psychical energy occurs
in two forms, one freely mobile and another, by comparison,
bound; we speak of [activations] and [hyperactivations] of psy-
chical material, and even venture to suppose a [hyperactivation]

Table 1 List of quotations pertaining to the characteristics of the secondary process (and the ego) and primary process

thinking (and the id)

The ego and the secondary process

Relevant quotations from Freud

1. Default energy store or reservoir, which possesses the property
of being spontaneously or tonically active.
2. Receives and ‘contains’ or ‘represses’ endogenous excitation.

3. Minimizes free-energy.

4. Integrates or binds the primary process and its representational
system (the id) into a broader, more cohesive, composite orga-
nization (the ego).

5. Specific ontogenetic development.

6. Supports reality-testing and perceptual processing.

7. Supports conscious awareness, cognition and directed
attention.

8. Possesses internally and externally-focused components, which
are inversely related (anti-correlated).

9. Excessive-engagement of internally-focused component and
impoverished engagement of externally-focused network
during pathological withdrawal; e.g. in depression and
schizophrenia.

10. Failure of systems to minimize free-energy (suppress endogen-
ous excitation) results in disturbed affect, cognition and per-
ception; as seen in non-ordinary states such as dreaming and
psychosis.

Q5, Q15, Q109, Q154, Q162, Q209, Q273, Q298, Q300, Q301,
Q314, Q320, Q321, Q416, Q438, Q454

Q1, Q15, Q46, Q80, Q132, Q152, Q154, Q183, Q205, Q209, Q212,
Q219, Q283, Q283, Q287, Q328, Q358, Q363, Q391, Q392,
Q427, Q427, Q429, Q437, Q448, Q475

Q2, @8, Q18, Q70, Q199, Q200, Q283, Q285, Q307, Q314, Q321,
Q366, Q373, Q410, Q461, Q483

Q15, Q29, Q45, Q46, Q154, Q209, Q218, Q231, Q233, Q234,
Q237, Q300, Q302, Q308, Q314, Q315, Q334, Q339, Q351,
Q358, Q360, Q383, Q384, Q385, Q391, Q397, Q402, Q413,
Q429, Q447, Q461, Q483

Q47, Q113, Q174, Q273, Q300, Q301, Q358, Q414, Q440, Q459,
Q486

Q15, Q19, Q23, Q39, Q51, Q153, Q234, Q258, Q259, Q310, Q350,
Q356, Q363, Q373, Q375, Q380, Q392, Q427, Q428, Q429,
Q448, Q482, Q485

Q10, Q21, Q27, Q39, Q40, Q153, Q154, Q204, Q234, Q238, Q249,
Q254, Q334, Q372, Q380, Q427

Q6, Q39, Q162, Q173, Q204, Q243, Q273, Q289, Q300, Q301,
Q320, 329, Q363, Q438, Q448, Q454, Q484

Q144, Q147, Q158, Q161, Q168, Q169, Q170, Q172, Q244, Q252,
Q253, Q263, Q265, Q266, Q267, Q277, Q288, Q292, Q293,
Q297, Q301, Q329, Q330, Q368,

Q23, Q35, @58, Q115, Q134, Q135, Q147, Q231, Q261, Q262,
Q333, Q365, Q383, Q455, Q462, Q466, Q469, Q475, Q476,
Q482, Q485

The id and primary process thinking

Relevant quotations from Freud

11. Characteristics of the system unconscious/the id and primary
process thinking: i.e. a primitive, ‘magical’ or animisitic style
of thinking, characterized neurophysiologically by ‘free’ move-
ment of energy. One can think of primary process thinking in
evolutionary terms as a ‘protoconsciousness’.

Q58, Q63, Q90, Q92, Q97, Q115, Q135, Q151, Q160, Q171, Q198,
Q201, Q203, Q209, Q211, Q216, Q217, Q218, Q228, Q229,
Q230, Q231, Q233, Q237, Q241, Q242, Q247, Q249, Q254,
Q257, Q261, Q270, Q279, Q280, Q282, Q299, Q305, Q311,
Q315, Q335, Q359, Q388, Q389, Q396, Q397, Q423, Q424,
Q425, Q426, Q437, Q440, Q442, Q443, Q446, Q453, Q461,
Q465, Q467, Q468, Q470, Q471, Q472, Q474, Q477, Q479,
Q480, Q482, Q490, Q491

The quotations can be found in Supplementary material.
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brings about a kind of synthesis of different processes—a syn-
thesis in the course of which free energy is transformed into
bound energy ... We hold firmly to the view that the distinction
between the [primary] and the [secondary] state lies in dynamic
relations of this kind, which would explain how it is that,
whether spontaneously or with our assistance, the one can be
changed into the other...We have found that processes in the
unconscious or in the id obey different laws from those in the
ego. We name these laws in their totality the primary process, in
contrast to the secondary process which governs the course of
events in the ego. (Q461, Freud, 1940)

Free-energy and the Bayesian
brain

In terms of theoretical and computational neuroscience, we will
focus on Helmholtz's suggestion that the brain is an inference
machine (Helmholtz, 1866; Dayan et al., 1995); this idea is now
a fundamental premise in neurobiology (Gregory, 1968). Key
examples of this include the Bayesian brain (Knill and Pouget,
2004), predictive-coding (Rao and Ballard, 1998) and the
free-energy principle (Friston, 2009). This framework assumes
that the brain uses internal hierarchical models to predict its sen-
sory input and suggests that neuronal activity (and synaptic con-
nections) try to minimize the ensuing prediction-error or
(Helmholtz) free-energy. This free-energy is a measure of surprise
and is essentially the amount of prediction-error. It is an informa-
tion theory quantity that, mathematically, plays the same role as
free-energy in statistical thermodynamics. Free-energy is not an
abstract concept; it can be quantified easily and is used routinely
in modelling empirical data (Friston et al., 2007) and in neuronal
simulations of perception and action (Friston et al., 2009).

The notion of a hierarchy is central here because it allows the
brain to construct its own top-down prior expectations about sen-
sory samples from the world. This resolves one of the key chal-
lenges facing the brain and also allows it to resolve ambiguities
when inferring and representing the causes of exteroceptive and
interoceptive sensations. Crucially, the hierarchical form of internal
models (and associated neuroanatomy) (Felleman and Van Essen,
1991) entails a progression in the complexity of representations, as
one proceeds up the hierarchy from thalamic nuclei and primary
sensory cortex to association and paralimbic cortex (e.g. from sen-
sations, through perceptions to concepts). This progression is
reflected in the temporal extent of what is represented; with
higher levels representing extended sequences of events that
best account for the stream of sensory information represented
in lower levels (see Kiebel et al., 2008 for a full discussion and
simulations).

The hierarchical architecture may also accommodate the distinc-
tion between the Freudian primary and secondary processes,
where the secondary process provides top-down predictions to
reduce free-energy associated with the primary process (cf. con-
verting free energy into bound energy). Under this mapping
between Freudian and Helmholtzian models, one can link the
energy associated with the primary process and the free-energy
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of Bayesian formulations. In both accounts, higher cortical areas
are trying to organize activity in lower-levels through suppression
of their free-energy.

Intrinsic brain networks and
the default mode

Analyses of spontaneous fluctuations in the blood oxygen level
dependent (BOLD) signal of functional magnetic resonance ima-
ging (fMRI) during unconstrained ‘resting’ states (typically lying
quietly with eyes closed or fixating on a cross) have identified a
number of large-scale intrinsic networks (Beckmann et al., 2005;
Damoiseaux et al., 2006). Of particular interest here is the so
called ‘default-mode network’ (DMN), a network of regions that
show high metabolic activity and blood flow at rest but which
deactivate during goal-directed cognition (Raichle, 2001). Recent
work has confirmed that the major nodes of the DMN are func-
tionally and structurally connected (van den Heuvel et al., 2008;
Greicius et al., 2009) and that this connectivity develops through
ontogeny (Fair et al., 2008; Kelly et al., 2009). Another feature of
the DMN is the inverse relationship of its neuronal activity with
that of another large-scale intrinsic network; the ‘attention system’
(Fox et al., 2005; Fransson, 2005; Corbetta and Shulman, 2002).
In this article, we pursue the idea that these intrinsic networks
correspond to the high-levels of an inferential hierarchy, which
function to suppress the free-energy of lower levels (i.e. suppress
prediction errors with top-down predictions). We associate this
optimization process with the secondary process. Furthermore,
we associate failures of top-down control with non-ordinary
states of consciousness, such as early and acute psychosis, the
temporal-lobe aura, dreaming and hallucinogenic drug states. In
what follows, we organize the evidence that speaks to the inte-
gration of neurobiological and psychoanalytic ideas and conclude
with a defence of its value and potential utility.

This article comprises three sections: in the first, we review evi-
dence that the development and functioning of the DMN is con-
sistent with ego-functions and the secondary process. We focus
specifically on the DMN's containment of endogenous excitation
and its suppression of systems engaged by exogenous stimuli.
In the second, we review evidence that a loss of top-down control
over limbic activity in hierarchically lower systems is equivalent to
a loss of the ego's control over the primary process. In the final
section, we discuss the clinical relevance of these ideas.

Large-scale intrinsic
networks, the secondary
process and ego

In this section, we introduce the idea that Freud's descriptions of
the development and functioning of the ego resonate with the
development and functioning of the DMN and its reciprocal
exchanges with subordinate brain systems. Freud's first useful
account of the ego was given in his posthumously published
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Project for a Scientific Psychology (Freud, 1895). Inspired
by the recent introduction of ‘neurone theory’ by Cajal and
Waldeyer-Harz, Freud hypothesized three functionally-distinct
classes of neurone: the ‘y neurones', which receive endogenous
input and make up the ego; the ‘neurones’, which are sensitive to
exogenous input; and the ‘o neurones’, which signal qualitative
information. Although this neuronal classification system was
abandoned by Freud soon after its conception, the ideas that
inspired it remained a source of influence throughout his work.
Several of Freud's most important ideas were introduced and/or
developed in the Project, including the notion that the ego is
an organization that receives and contains/represses bottom-up
endogenous excitation (Table 1, row 2; Q1, Q15, Q46 and
Q429).

The secondary process, or ‘secondary process cognition’, is the
mode of cognition of the ego; put simply, it is the mode of normal
waking consciousness of adult humans (e.g. Q317). Freud
described the secondary process as ‘inhibited’ and ‘bound’; in con-
tradistinction to the primary process which is ‘free’ and ‘motile’
(Freud, 1895, 1900). The concept of ‘bound’ energy was attrib-
uted by Freud to ideas first expressed by Breuer in their Studies on
Hysteria (Breuer and Freud, 1895). Breuer conjectured the exis-
tence of a system of tonically active neurons, forming a ‘reservoir
of nervous tension’ (e.g. Q45, Q154 and Q233). It is significant
that the primary and secondary processes owe their inception
to observations of non-ordinary states of consciousness (e.g. row
10, Table 1; Q23, Q35, Q115, Q333 and Q462). We shall see
later that compelling evidence for the existence of two distinct
modes of cognition can be found in studies of non-ordinary
states. In what follows, we review the functional anatomy of
the default-mode and related networks and then consider these
networks from a theoretical perspective.

Functional anatomy of the
default-mode

The notion of the DMN originated in a paper by Marcus Raichle
reviewing a pattern of blood flow, glucose metabolism and
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oxygen consumption in the resting-state, which consistently
decreases during goal-directed cognition (Raichle, 2001); in
other words, a high-level distributed system whose activity is
reciprocally related to the activity in cortical areas subserving
task or stimulus-bound processing. Raichle proposed that this pat-
tern reflects a default mode of brain function and a functionally
relevant physiological baseline (Raichle, 2001). Subsequent work
has associated activity in the network identified by Raichle
and others (Greicius et al.,, 2003; Beckmann et al., 2005;
Damoiseaux et al., 2006; Fransson and Marrelec, 2008; Wu
et al., 2009) with phenomena such as self-referential processing,
autobiographical recollection, mind-wandering and theory-of-mind
(Gusnard et al., 2001; Vincent et al., 2006; Mason et al., 2007,
Buckner et al., 2008; see also Q332).

Regions specifically implicated in the DMN include the medial
prefrontal cortex, the posterior cingulate cortex, the inferior pari-
etal lobule, the lateral and inferior temporal cortex and the medial
temporal lobes (Buckner et al., 2008; Fransson and Marrelec,
2008). Analyses of resting-state functional connectivity and diffu-
sion tensor imaging have showed that the major nodes of the
DMN are strongly interconnected (Greicius et al., 2003, 2009;
Van den Heuvel et al., 2009) and that this connectivity matures
through development (Fair et al.,, 2008; Kelly et al., 2009).
Functional connectivity in the DMN is relatively weak in the
elderly (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008)
and in patients with attention deficit disorder (Castellanos et al.,
2008) and impulse control disorders (Church et al., 2009).
Interestingly, medial prefrontal cortex-posterior cingulate cortex
connectivity is entirely absent in infants (Fransson et al., 2007).
These findings imply that the DMN develops through ontogeny, in
a manner that parallels the emergence of ego-functions (Table 1,
row 5).

Model and data-driven analyses of resting-state functional con-
nectivity, diffusion tensor imaging analyses of structural connec-
tivity and anatomical work in primates suggest that the medial
temporal lobes are connected to the medial prefrontal cortex
and posterior cingulate cortex nodes of the DMN (Catani et al.,
2003; Vincent et al., 2006; Buckner et al., 2008; Fransson and
Marrelec, 2008; Kahn et al., 2008; Saleem et al., 2008; van den

| sPL-1ps
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Figure 1 The DMN (yellow/orange) and attention system (blue): resting state functional connectivity of three seed regions: the
dorsal medial prefrontal cortex, ventral medial prefrontal cortex and hippocampal formation (medial temporal lobes). Positive correlations
(yellow-orange) with all seeds were evident in the posterior cingulate (PCC), posterior inferior parietal lobule (pIPL) and medial prefrontal
cortex (MPFC). Regions negatively correlated with these seeds constitute the attention system and include the superior parietal lobule
(SPL), intraparietal sulcus (IPS), the motion-sensitive middle temporal area (MT+), the frontal eye fields (FEF) the dorsal anterior cingulate
(dACCQ), the dorsolateral prefrontal cortex (DLPFC), the ventral premotor cortex and the frontal operculum. Image reproduced from

Buckner et al. (2008), with permission.
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Heuvel et al., 2008; Robinson et al., 2009). This is important
because the medial temporal lobes contain key structures (e.g.
the hippocampal formation, the amygdala, parahippocampal
gyrus and entorhinal cortex) that play a role in mnemonic and
hedonic or emotional processing. The evidence suggests that
medial prefrontal cortex-medial temporal lobe functional and
structural connectivity increases through ontogeny (Eluvathingal
et al., 2007; Kelly et al., 2009) with a notable increase at puberty
(Benes et al., 1989). A recent study found reduced medial pre-
frontal cortex-amygdala functional connectivity in patients with
schizophrenia and an inverse correlation between connectivity
and aggression in these patients (Hoptman et al., 2009).
Preclinical work indicates that emotional extinction takes place
via glutamatergic projections from the medial prefrontal cortex
terminating on inhibitory interneurons in the medial temporal
lobes (Rosenkranz and Grace, 2002; Rosenkranz et al., 2003)
and a recent analysis of effective connectivity implied that activa-
tion of the rostral anterior cingulate drives inhibition of the amyg-
dala in response to fearful faces (Stein et al., 2007).

There is a huge amount of clinical and preclinical evidence sup-
porting the limbic-suppressive function of the medial prefrontal
cortex (Hariri et al., 2000; Milad and Quirk, 2002; Rosenkranz
and Grace 2002; Phillips et al., 2003; Phelps et al., 2004; Etkin
et al., 2006; Milad et al., 2006). Functional neuroimaging studies
have correlated primitive thought and emotion with decreased
activity in the medial prefrontal cortex and increased activity in
the medial temporal lobes (Pietrini et al., 2000; Dougherty et al.,
2004), while suppression of these behaviours correlated with
medial prefrontal cortex activations (Pietrini et al., 2000;
Beauregard et al., 2001; Dougherty et al., 2004). The recollection
of distressing memories and emotions in patients with
post-traumatic stress disorder has also been found to correlate
with medial prefrontal cortex deactivations and medial temporal
lobe activations (Bremner et al., 1999; Shin et al., 2004, 2006;
Hopper et al., 2007) and the blockade of these memories also
correlated with medial prefrontal cortex activations (Lanius
et al., 2002; Reinders et al., 2003, 2006). Damage to the ventro-
medial prefrontal cortex has long been associated with impaired
impulse control (Grafmen et al., 1996; Anderson et al., 1999;
Davidson et al., 2000; Kaplan-Solms and Solms, 2001; Solms
and Turnbull, 2002). The medial prefrontal cortex sends dense
projections to the ventral striatum (Ferry et al., 2000) and mid-
brain (Carr and Sesack, 2000). The ventral striatum displays func-
tional connectivity with the midbrain, medial temporal lobes and
higher-level nodes of the DMN (Postuma and Dagher, 2006; Di
Martino et al., 2008; Gutman et al., 2009) and the midbrain and
ventral striatum signal prediction-error and motivational-salience
(Robbins and Everitt, 1996; Berridge and Robinson, 1998;
Schultz, 2002; Kapur, 2005). In summary, the DMN comprises
high-level cortical nodes such as the medial prefrontal cortex
that exchange neuronal signals with subcortical systems and
other association and polymodal cortex, especially the systems
responsible for emotional learning and memory. Much of the evi-
dence suggests that activation of the DMN suppresses activity in
lower systems. We now consider these aspects of functional anat-
omy in the light of hierarchical inference and the secondary
process.
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Theoretical formulations of
the default mode

Freud argued that the ego modulates both endogenous and exog-
enous excitation. Empirically, this can be seen in early and acute
psychosis, the aura of temporal lobe epilepsy and hallucinogenic
states, where affective (e.g. fear), mnemonic (e.g. moments
of déja vu or vivid recollection), perceptual (e.g. hallucinations)
and cognitive (e.g. confused or muddled thinking) processing is
perturbed (Bleuler, 1911; Epstein and Ervin, 1956; Cohen, 1964;
Vollenweider et al., 1997) (Table 1, row 10; e.g. Q462). He fur-
ther hypothesized that the ontogenetic/phylogenetic evolution of
healthy, adult waking cognition depends on the formation of an
equilibrium between the pressing forces of the primary process
(entailed by the id) and the counter forces of the secondary pro-
cess (entailed by the ego) (e.g. Q116). This description is remark-
ably consistent with contemporary models of cognition based on
hierarchical Bayesian inference and Helmholtzian free-energy;
where backward connections from higher cortical areas work to
minimize the free-energy of lower areas (Mumford, 1992; Rao
and Ballard, 1999; Friston, 2003; Kiebel et al., 2009).

Anatomically speaking, forward connections originate in supra-
granular layers and terminate in layer four spiny stellate cells. They
project from lower to higher-levels; e.g. from thalamic nuclei to pri-
mary sensory cortex or from secondary sensory cortex to tertiary
sensory areas. Backward connections are more abundant and diffuse
than forward connections and their effects are primarily modulatory.
Backward connections originate in deep pyramidal cells (infragra-
nular layers) of the cortex and target infra and supragranular
layers of lower cortical areas. Based on Bayesian and Helmholtzian
principles it has been proposed that forward connections convey
prediction-errors that optimize representations in higher levels.
These representations are then used to form predictions that are
conveyed by backward connections to lower levels. These predic-
tions suppress or cancel prediction-errors (free-energy) until they
can be minimized no further (Friston, 2003, 2005). In this way,
the brain optimizes its representation of the world by suppressing
prediction-errors with reciprocal message passing between hierar-
chical levels to minimize free-energy. This suppression simply
involves countering excitatory presynaptic inputs (from representa-
tional units to neurons encoding prediction-error) with top-down
presynaptic inputs, mediated by inhibitory interneurons. When the
representations at any level can be explained by top-down predic-
tions from the level above, prediction-error is minimized and the
representations are internally consistent over levels. The aim of this
process is to optimize parsimonious explanations for what caused
sensory input (Friston, 2003) and establish sensory predictions
to guide action and behaviour (Friston et al., 2009). Crucially, this
empirically-informed scheme (Sandell and Schiller, 1982; Girard and
Bullier, 1989; Hupé et al., 1998; Kleinschmidt et al., 1998; Murray
et al., 2002; Lachaux et al., 2005; Chen et al., 2008) recapitulates
Freud's 19th century conception and in particular his principle of
constancy:

[We] have taken the view that the principle which governs
all mental processes is a special case of Fechner's '‘tendency
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towards stability’, and have accordingly attributed to the
mental apparatus the purpose of reducing to nothing, or at
least of keeping as low as possible, the sums of excitation
which flow in upon it. (Freud, 1924; Q366)

It is significant that Freud cited as his inspiration for these ideas,
Gustav Fechner, the founder of psychophysics and a contempo-
rary of Helmholtz (e.g. Q307, Q353, Q366, Q379): the process
of minimizing 'the sums of excitation’ is exactly the same as
minimizing the sum of squared prediction-error or free-energy
in Helmholtzian schemes. This rests on the assumption that
the brain explicitly encodes prediction-error with neuronal activity
(excitation) that is suppressed or explained by backward
(top-down) afferents.

As mentioned above, Freud argued that the ego modulates and
suppresses both exogenous and endogenous signals (Table 1, rows
2 and 6). In neurobiological terms, exogenous signals correspond
to interoceptive and exteroceptive signals from thalamic and
unimodal sensory areas that convey sensory signals (prediction-
errors) to polymodal and medial temporal lobe structures.
Endogenous signals could be equated with subsequent bottom-up
prediction errors (excitation) arising in limbic and paralimbic sys-
tems, which are passed up to high-level polymodal cortical areas
that comprise the nodes of the default-mode.

Clearly, the principles that attend hierarchical inference
under Helmholtzian schemes are generic and may apply to all
hierarchically deployed brain systems. However, we will focus
on the DMN; specifically, on medial prefrontal suppression of
limbic and paralimbic activity, and associate this with the suppres-
sion of endogenous activity by the ego. We now consider how
the ego modulates excitation evoked by stimuli from the
external world.

Hierarchical brain systems

As discussed in the introduction, BOLD signal oscillations in the
DMN are characterized by their inverse relation to those of
another major intrinsic network, referred to as the attention
system (Corbetta and Shulman, 2002; Fox et al.,, 2005;
Fransson, 2005). As well as showing a spontaneous inverse rela-
tionship with the DMN, the attention system is activated during
externally-directed cognition and deactivated during internally-
directed cognition, whereas the opposite is true of the DMN
(Buckner et al., 2008); implying a ‘give-and-take’ relationship
(Raichle, 2009). Regions implicated in the attention system include
the dorsolateral prefrontal cortex, the dorsal anterior cingulate
cortex, the frontal eye fields, the extrastriate cortex (e.g. V5)
the superior parietal lobule, the intraparietal sulcus and the ventral
premotor cortex (Buckner et al., 2008). These regions are active
during target detection, attention to spatial detail and hand-eye
coordination (Corbetta and Shulman, 2002; Shulman, 2003).
Moreover, many of these nodes have been associated with
top-down control of primary sensory input (Friston and Blichel,
2000; Lachaux et al., 2005). High-level association cortices not
only receive feedforward signals from sensory regions but also
anticipate and reciprocate these inputs with backward connections
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conferring context-specificity and higher-level constraints (i.e. pre-
dictions) (Rao and Ballard, 1999; Friston, 2003, 2005; Angelucci
and Bressloff, 2006).

Recent work has suggested that what we have referred to
as the ‘attention system’ is in fact not a unified system. Based
on independent component analyses of resting state BOLD activ-
ity, Seeley et al. (2007) have shown that the system described
by Fox et al. (2005) and Fransson (2005) can be differentiated
into a ‘salience system' which includes the dorsal anterior
cingulate cortex, frontoinsular cortices, amygdala and ventral mid-
brain; and a more dorsal and lateral cortical system (the 'dorsal
attention system’) which includes the dorsolateral prefrontal
cortex, frontal eye fields, dorsal medial prefrontal cortex, intrapar-
ietal sulcus and superior parietal lobule. BOLD signal oscillations
in both systems exhibit an inverse relationship with those in the
posterior cingulate cortex of the DMN (Greicius et al., 2003) but
the systems do not appear to be well integrated with each other.
This differentiation has also been suggested by others (He et al.,
2007; Dosenbach et al., 2008; Sridharan et al., 2008; Vincent
et al., 2008).

The picture that emerges is of a hierarchy of brain systems with
the DMN at the top and the salience and dorsal attention systems
at intermediate levels, above thalamic and unimodal sensory
cortex. Under a Helmholtzian model, each system is trying to
suppress the free-energy of its subordinates, through a process
of optimizing predictions to reduce prediction-errors. This rests
on recurrent message-passing between these systems that leads
to self-organized activation patterns with a characteristic reciproc-
ity or 'give-and-take' among levels. In this view, activation of the
attention system may facilitate the suppression of exogenous exci-
tation (Q258). Similarly, the DMN furnishes top-down control of
the attentional and salience systems by explaining and thereby
suppressing their activity. We next address the physiological
basis of message-passing or interactions among brain regions
that mediate this self-organized suppression.

Spontaneous BOLD
oscillations and neuronal
activity

Until recently, there had been some uncertainty about whether
spontaneous BOLD-signal oscillations are generated by neuronal
activity or non-neuronal physiological processes (Wise et al., 2004;
Birn et al., 2006). Recent work has shown that spontaneous BOLD
oscillations most probably have a neuronal origin (He et al., 2008;
Nir et al., 2008; Shmuel and Leopold, 2008). Simultaneous fMRI
and intracranial recordings in monkeys (Shmuel and Leopold,
2008) and humans (Nir et al., 2007) have identified spontaneous
neuronal fluctuations that correlate with spontaneous BOLD fluc-
tuations (Shmuel and Leopold, 2008). The neuronal fluctuations,
which are coherent across the hemispheres, were evident in multi-
unit firing rates and local field potential gamma power. Stimulus
evoked BOLD activations have also been shown to correlate pos-
itively with gamma power (Niessing et al., 2005). Gamma has
been associated with attention, feature-binding and expectancy
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Figure 2 Resting state functional connectivity in three cortical networks: (i) dorsal attention system (DAS, blue) using voxels in the middle
temporal area and superior parietal lobule as regions of interest; (ii) the salience system (light green) using voxels in the anterior PFC and
anterior inferior parietal lobule as regions of interest; and (iii) the default mode network (orange) using the hippocampal formation and
posterior inferior parietal lobule as regions of interest. Overlap between the networks is shown in dark green (salience system and DMN)
and red (dorsal attention systems and salience system). Image used with permission from Justin Vincent and Randy Buckner.

(Singer and Gray, 1995; Herrmann, 2000; Engel et al., 2001). This
suggests that BOLD fluctuations reflect cortical coherence asso-
ciated with gamma and secondary process cognition, particularly
since the gamma frequency, recorded in higher-level cortical areas,
has recently been shown to suppress lower frequencies
in lower-level cortical areas (Chen et al., 2009). This leads us to
predict that the fluctuations in gamma power evident in the
large-scale intrinsic networks index the ongoing minimization of
free-energy in subordinate levels of the hierarchy (Engel et al.,
2001; Raichle, 2007) and could provide an empirical measure of
the secondary process.

Generally speaking, oscillatory processes are ubiquitous in the
brain and serve to couple remote neuronal populations. High fre-
quency gamma has often been implicated in perceptual synthesis
and binding (e.g. Singer, 2009); while theta rhythms have been
most studied in the hippocampal system, where they are asso-
ciated with (spatial) memory and exploration (e.g. Lisman and
Redish, 2009). Crucially, theta and gamma are themselves coupled
(e.g. Sirota et al., 2008), where slower theta oscillations may pro-
vide a temporal frame of reference for faster computations
mediated at gamma frequencies. We will return to the oscillations
and frequency-specific coupling in the brain in the next section.

So far we have discussed the importance of reciprocal or
anti-correlated activity in the DMN and networks for goal-directed
cognition. However, it should be noted that spontaneous fluctua-
tions in the DMN continue during active cognition, just as

spontaneous fluctuations in the dorsal attention system continue
during rest (Hampson et al.,, 2002; Beckmann et al., 2005;
Damoiseaux et al., 2006; Fox et al., 2007). This tonicity presum-
ably primes structures to infer exogenous inputs (Fox et al., 2007
Raichle, 2007) and supports a background level of predictive
coding (Hampson et al., 2002). Furthermore, spontaneous fluctu-
ations in the BOLD signal, which can be as large in amplitude as
evoked BOLD responses (Fox et al., 2007), have been shown to
reflect variations in behaviour (Boly et al., 2007; Fox et al., 2007).
Much of the brain's vast energy budget is reserved for spontane-
ous neuronal activity (Fox and Raichle, 2007; Raichle, 2007).
We speculate that spontaneous activity in the DMN reflects the
constant containment of spontaneous endogenous activity—
commensurate with Freud's concept of repression (Q209), while
spontaneous activity in the dorsal attention system indexes
the continual monitoring and suppression of exogenous stimuli.
This conjecture appeals to the Helmholtzian view of the brain as
an inference engine that continually generates predictions and
hypotheses that, when freed from the present (Kiebel et al.,
2009), necessarily entails the past and future.

In addition to the functional importance of spontaneous neuro-
nal activity in intrinsic networks, the give-and-take between the
default system and task-positive systems appears to be vital for
active cognition and conscious awareness (Pomarol-Clotet et al.,
2008; He and Raichle, 2009; Whitfield-Gabrieli et al., 2009).
Functional connectivity within the DMN has been shown to
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increase through ontogeny (Fair et al., 2008; Kelly et al., 2009),
decrease in ageing (Andrews-Hanna et al., 2007; Damoiseaux
et al., 2008) and to be underdeveloped in patients with impaired
impulse control (Church et al.,, 2009). These findings imply that
functional connectivity in the DMN (Hampson et al., 2006) and
the dorsal attention system (Seeley et al., 2007) provides an index
of cognitive aptitude but not necessarily active cognition
(Larson-Prior et al., 2009). Ineffective deactivation of the DMN
has been associated with cognitive error in healthy subjects
(Li et al., 2007; Eichele et al. 2008) and negative symptoms in
schizophrenia (Pomarol-Clotet et al.,, 2008; Whitfield-Gabrieli
et al., 2009) and depression (Grimm et al., 2009; Sheline et al.,
2009). Functional connectivity in the DMN is not significantly
altered in sleep, sedation or coma (Boly et al., 2008,
Larson-Prior et al., 2009) but the give-and-take between the
DMN and its anti-correlated networks is (He and Raichle, 2009)
(see Q238).

Summary and synthesis

In this section, the secondary process was considered in relation to
large-scale intrinsic networks working to predict and suppress exci-
tation (Helmholtz free-energy) in subordinate systems. The con-
cept of the secondary process entailed by ego-functions was
associated with the suppressive effect of the DMN on its subcor-
tical nodes and anti-correlated networks. Functional connectivity
between limbic (e.g. the hippocampus and amygdala) structures
and major nodes of the DMN during rest (Buckner et al., 2008; Di
Martino et al., 2008) supports the notion that the systems enact-
ing ego-functions have evolved to receive and control endogenous
excitation that underlies mnemonic and hedonic processing. In the
next section, we focus on the primary process and specifically how
it is manifest in non-ordinary states of consciousness.

The phenomenology of primary
process thinking

In this section we describe the phenomenology of non-ordinary
states of consciousness that have been associated with primary
process thinking. The primary process is not generally regarded
as a serious topic of science but the phenomenology of cer-
tain non-ordinary states compel us to consider its importance.
Psychoanalysis owes its origins to observations of non-ordinary
states (Table 1, row 10; e.g. Q23, Q35, Q115, Q333; Q462).
An early observation that has remained at the core of the
Freudian model is that there exists in the mind an archaic mode
of cognition, which under normal waking conditions is effectively
suppressed (Q315). Freud saw this ‘primary’ mode as belonging to
an ontogenetically and phylogenetically primitive system, which he
referred to initially as ‘the unconscious’ (Breuer and Freud, 1895),
later as ‘the system unconscious’, ‘system Ucs' or just ‘Ucs’ (Freud,
1900, 1915b) and eventually as ‘the it' (Freud, 1923) (note:
Freud's original term for ‘the id’" was 'das es' and should really
have been translated ‘the it', just as his original term for ‘the ego’,
‘das Ich’, should have been translated ‘the I'; for simplicity how-
ever, we will use the familiar terms ‘id' and 'ego’).

R. L. Carhart-Harris and K. J. Friston

Thus, the term ‘the id" was introduced relatively late by Freud
(Freud, 1923) as a new name for ‘the unconscious' in its system-
atic sense (i.e. 'the system unconscious' or ‘system Ucs') (Freud,
1900, 1915b). Freud wrote relatively less about the id than the
system unconscious but the two are essentially synonymous (see
Q422, Q423, Q458 and Q461). Freud's decision to rename the
system unconscious ‘the id’" was motivated by his acknowledge-
ment that aspects of the ego are also unconscious (in the descrip-
tive sense) and processes in the id can become conscious. The
introduction of the id was useful in this respect as it resolved
ambiguities relating to the descriptive meaning of ‘unconscious’.
Referred to as ‘the id’, the unconscious could be understood more
explicitly as a system subserving a specific mode of cognition
(e.g. Q461).

The characteristics of primary process thinking are clearest when
contrasted against those of the secondary process: just as the
characteristics of the primary process only become manifest in
certain non-ordinary states, the characteristics of the secondary
process only really become evident when they are lost. For exam-
ple, Freud considered timelessness to be a major characteristic of
the id and time perception to be a function of the ego (e.g.
Q424). The notion of timelessness is difficult to comprehend
from the vantage of normal waking consciousness but becomes
clearer if we consider the phenomenology of states such as the
temporal lobe aura: ‘Time seems endless' (Epstein and Ervin,
1956); acute psychosis: ‘Time slowed down, much more experi-
ence could be crowded into a brief time span’ (Bowers, 1965) and
the hallucinogenic drug state: ‘[Under the influence of drugs such
as LSD, one has] the feeling that so much was 'seen’ that
“hours” or *'days’" or "aeons” must have passed’ (Masters and
Houston, 2000). Recent work involving the serotoninergic halluci-
nogen, psilocybin, has shown that hallucinogen-induced impair-
ments in temporal perception are dose-dependent (Wackermann
et al., 2008). Furthermore, recent formulations of the free-energy
principle suggest that there is a systematic increase in temporal
coherence in higher-level structures (Kiebel et al., 2009). Thus,
impaired temporal perception is a property of primary process
thinking that has the potential to be measured psychophysically;
thus bringing previously intangible phenomena into the scientific
realm. Four other qualities of primary process thinking that can be
assessed empirically include the following.

(i) Sensations of fear or dread, e.g. in the aura of temporal lobe
epilepsy: 'l feel afraid, as if something awful might happen’
(Williams, 1956); early psychosis: ‘Suddenly Fear, agonizing,
boundless, Fear, overcame me, not the usual uneasiness of
unreality, but real fear, such as one knows at the approach
of danger, of calamity’ (Sechehaye, 1951); the hallucino-
genic drug state: ‘I found myself all at once on the brink
of panic’ (Huxley, 1954); and dreaming: ‘Fear is the most
frequently occurring dream emotion’ (Bulkeley, 2009).

(i) Perceptual distortions/visual hallucinations, e.g. in the aura
of temporal lobe epilepsy: ‘The surroundings feel strange
and unfamiliar’ (Hansen and Brodtkorb, 2003); early psycho-
sis: ‘It wasn't really unreal; it was just strange, funny, differ-
ent’ (Cutting and Dunne, 1989); and the hallucinogenic
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drug state: ‘The room and furniture were distorted, strange
and terrifying' (LSD, Cohen, 1964).

(i) Déja vu, recollective or reliving phenomena, e.g. in the aura
of the temporal lobe epilepsy: ‘I went back to all that
occurred in my childhood' (Hughlings-Jackson, 1879); early
psychosis: ‘My whole world seemed to cave in—I kept
thinking about my birthplace and my past’ (Cutting and
Dunne, 1989); and the hallucinogenic drug state: ‘I started
to cry uncontrollably and nothing could have stopped it—it
was like a dam giving way. At first | didn't know what | was
weeping about, but soon became aware that | was reliving
childhood experiences of which | had scarcely any conscious
knowledge. Until today | had remembered only fragments,
but now the entire sequence reeled off as from a microfiim
that was securely stored within my head' (LSD, Cohen,
1964).

(iv) Disturbance to the sense-of-self, e.g. in the aura of temporal
lobe epilepsy: ‘I felt that | disappeared’ (Johanson et al.,
2008); early psychosis: ‘When | look at somebody my own
personality is in danger. | am undergoing a transformation
and myself is beginning to disappear’ (Chapman, 1966); and
the hallucinogenic drug state: ‘I felt the relaxing of the self
boundaries' (LSD, Cohen, 1964).

Other characteristics of primary process thinking include a fear
of losing control of ones mind, a general sense of the peculiarity
of things, euphoria, grandiosity, paranoia and suspiciousness,
thought-disturbances, bizarre thought-content and an increased
interest in mystical, magical or animistic notions. All these phe-
nomena could easily be assessed using subjective rating scales as
a global measure of ego-disturbance or primary process thinking.
However, an association between the primary process and dream-
ing, acute psychosis, temporal lobe aura and hallucinogenic states
can be motivated at a purely phenomenological level. Crucially, all
these states have been compared with each other previously; e.g.
psychosis and dreaming (Freud, 1900; Jung, 1907; Bleuler, 1911);
psychosis and the temporal lobe aura (Slater and Beard, 1963;
Bear, 1979; Ferguson and Rayport, 2006); psychosis and the hal-
lucinogenic drug state (Behringer, 1927; Bowers and Freedman,
1966; Gouzoulis et al., 1994); dreaming and the temporal lobe
aura (Rodin et al., 1955; Penfield and Perot, 1963; Mahl et al.,
1964); dreaming and the hallucinogenic drug state (Grof, 1975;
Fischman, 1983; Callaway, 1988); and the temporal lobe aura and
the hallucinogenic drug state (Bercel et al., 1956; Schwarz et al.,
1965; Balestrieri, 1967). It is also worth noting that dreaming
(Freud, 1900), psychosis (Freud, 1900; Bleuler, 1911), the tempo-
ral lobe aura (Kubie, 1952; Robin et al., 1955; Delgado et al.,
1956; Epstein and Ervin, 1956; Ostow, 1957; Mahl et al., 1964;
Horowtiz et al.,, 1968) and the hallucinogenic drug state (Busch
and Johnson, 1950; Sandison et al., 1954; Cattell, 1957; Martin,
1957; Eisner, 1959; Cohen, 1964; Abramson, 1967; Horowitz
et al., 1968; Grof, 1975) have all been described as states condu-
cive to the emergence of primary process thinking. In the remain-
der of this section we will review evidence that these states, which
clearly display a related phenomenology, also possess a related
neurophysiology.
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Neurophysiology of the primary
process

In this section, we show that brain states associated with primary
process thinking have common neurophysiological substrates.
Intracranial electroencephalography (EEG) recordings in medial
temporal structures, the superior temporal gyrus and the visual
association cortex, after high-frequency stimulation of the peri-
rhinal cortex, reveals bursts of synchronous high-amplitude theta
activity spreading from the medial temporal lobes to the visual
association cortices during the hallucinatory revival of past expe-
riences (Barbeau et al, 2005). This activity is consistent with
Freud's speculations about the processes underlying dreaming
and related states (e.g. Q97 and Q98). Similar activity has
been recorded in the medial temporal lobes of other epileptic
patients during states of hallucinosis and recollection (Rodin
et al.,, 1955; Heath, 1961; Stevens et al., 1969) and increased
theta power has been recorded over the medial temporal lobes
during recollection using magnetoencephalography (Guderian and
Duzel, 2005).

In the 1950s and early 1960s, activity was recorded in cortical
and subcortical structures in a large number of patients experien-
cing acute psychotic episodes (Heath, 1954; Lesse et al., 1955;
Sem-Jacobsen et al., 1956; Heath and Mickle, 1960; Sherwood,
1962; Heath and Walker, 1985). Subcortical contacts revealed
conspicuous activities, which were generally not seen in the
cortex or at the scalp (Sem-Jacobsen et al, 1956; Heath and
Mickle, 1960). In actively psychotic patients, spiking and bursts
of high-amplitude synchronous activity (of variable frequency
but often theta) were recorded in the septum (which until the
mid-1970s included the nucleus accumbens) (Heath, 1954;
Stevens, 1999) amygdala and hippocampus (Sem-Jacobsen
et al., 1956; Heath and Mickle, 1960; Sherwood, 1962). This
activity was specific to these regions, was most pronounced
when the psychosis was most florid and was absent when the
symptoms remitted (Heath and Mickle, 1960).

Intracranial recordings in subjects administered the hallucino-
genic drugs LSD and mescaline revealed spiking and bursts
of high-amplitude activity in the medial temporal lobes similar to
that recorded in the acutely psychotic patients (Schwarz et al.,
1956; Sem-Jacobsen et al., 1956; Monroe et al., 1957; Heath
and Mickle, 1960; Chapman et al., 1962). LSD and related
drugs were used extensively in the 1950s and 60s as adjuncts to
psychoanalytic psychotherapy (Abramson, 1967; Grinspoon and
Bakalar, 1979). Spontaneous recollections of a similar nature to
those associated with the temporal lobe aura (e.g. Penfield and
Perot, 1963; Barbeau et al., 2005) have been reported after inges-
tion of LSD and psilocybin (e.g. Sandison et al., 1954; Grof, 1975;
Vollenweider et al, 1997). High-amplitude bursts of low-
frequency/theta activity have also been recorded in the human
hippocampus in rapid eye movement (REM) sleep (Brazier, 1968;
Freemon and Walter, 1970; Giaquinto, 1973; Moiseeva and
Aleksanyan, 1976; Mann et al., 1997; Yu et al., 1997; Boédizs
et al., 2001; Cantero et al., 2003) and LSD given to humans
immediately prior to (Toyoda, 1964; Muzio et al., 1966) or
during sleep (Torda, 1968) has been shown to promote REM
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sleep and dreaming. These studies provide converging evidence
that a specific mode of cognition (primary process thinking),
rests on brain states, which possess a characteristic
neurophysiology.

There are also some interesting examples of medial temporal
activities being influenced by psychiatric interview (Heath, 1954,
1964; Lesse et al., 1955). Sporadic bursts of high-amplitude syn-
chronous activity recorded intracranially in the medial temporal
lobes (Heath, 1954, 1964; Lesse et al., 1955) were detected as
personal memories, with strong emotional content, were touched
on. The activity desynchronized if the patient attended to his
environment (Lesse et al., 1955) or carried out a mathematical
problem (Heath, 1954, 1964).

The abnormal limbic activity recorded in the temporal lobe aura,
acute psychosis, the hallucinogenic drug state and REM sleep is
often seen in the theta range (Sem-Jacobsen et al., 1955; Heath
et al., 1955-56; Schwarz et al., 1956; Sem-Jacobsen et al., 1956;
Monroe et al., 1957; Heath and Mickle, 1960; Chapman et al.,
1962; Sherwood, 1962; Cantero et al, 2003; Barbeau et al.,
2005), although bursts of high-amplitude fast activity were also
seen (e.g. Lesse et al., 1955; Heath et al., 1955-56). Hippocampal
theta in animals is reliably associated with locomotion, orienting
and REM sleep (Kahana et al., 2001) and also long-term potentia-
tion (Holscher et al., 1997). Hippocampal theta depends on inputs
from the septal nuclei, a major theta generator (Petsche et al.,
1962; Winson 1978) and another site from which the abnormal
activity was recorded in non-ordinary states in humans (e.g.
Heath, 1954; Sherwood, 1962). As well as providing conditions
for encoding new experiences, hippocampal theta facilitates the
retrieval of past experiences (Hasselmo et al., 2002 Barbeau et al.,
2005). Scalp recordings of increased theta power associated with
goal-directed cognition (Burgess and Gruzelier, 2000; Krause
et al., 2000; Onton et al., 2005) are unlikely to relate to the
high-amplitude bursts seen in the septum and medial temporal
lobes during the non-ordinary states of consciousness described
above (Gevins et al.,, 1997; Kahana et al., 2001; Buzsaki 2002;
Raghavachari et al., 2006). The cortex is capable of generating its
own theta (Silva et al., 1991; Raghavachari et al., 2006) and
intracranial work in humans has provided more evidence for
low-amplitude, high-frequency oscillations in the hippocampus
during attentiveness than for theta (Heath, 1954, 1964; Lesse
et al, 1955; Halgren et al., 1978; Arnolds et al., 1980; Huh
et al, 1990; Meador et al, 1991; Caplan et al., 2007;
Axmacher et al.,, 2007). Moreover, in the non-ordinary states,
activity recorded from the scalp and in the cortex is generally
low-amplitude, high-frequency and desynchronous (Heath and
Mickle, 1960; Chapman et al, 1962; Rodin et al., 1966;
Cantero et al., 2003); such activity is highly characteristic of
REM sleep (Jouvet, 1965; Maquet et al., 1996; Braun et al.,
1998; Cantero et al., 2003; Wehrle et al., 2007) and other cortical
‘up’ states (Steriade et al., 2001) such as those induced by ser-
otoninergic hallucinogens (Lambe and Aghajanian, 2006).

Based on empirical findings (e.g. Cafive et al., 1996;
Jeanmonod et al., 1996, 2003; Llinds et al., 1998, 1999) it has
been proposed that bursts of limbic theta, recorded in the cortex
as increased gamma, can index the positive symptoms of various
neurological and psychiatric disorders (Llinds et al., 1999;
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Jeanmonod et al.,, 2003; Llinds and Steriade, 2006). Under
normal conditions, cortical gamma readily suppresses low-
frequency oscillations (Chen et al.,, 2009). This function is ana-
logous to the secondary process, but in pathological states and
dreaming, limbic activity is more anarchic (e.g. Oertel et al.,
2007; Wehrle et al., 2007) and the cortex must work harder to
contain it (Llinas et al., 1999; Jeanmonod et al., 2003; Llinas and
Steriade, 2006).

Recent intracranial EEG work in humans, using subdural
electrodes recorded theta phase-modulation of high-frequency
(80-150 Hz) gamma power (Canolty et al., 2006). Theta modula-
tion of gamma power was evident at rest but also during
behavioural tasks. Theta-gamma coupling was highest at the
trough of the theta phase. Moreover, electrodes showing the
highest mean theta power also showed the strongest
theta-gamma coupling. These findings imply that theta modulates
coupling between theta and gamma and a number of researchers
have suggested that theta may promote long-range coupling
in cortical networks (e.g. von Stein and Sarnthein, 2000;
Buzsaki, 2006).

Summary and synthesis

Integrating these findings, we propose that high-amplitude
low-frequency (e.g. theta) discharges in limbic and paralimbic
regions index the free-energy of the Helmholtzian scheme and
mediate the primary process of the Freudian scheme. In waking
cognition, low-frequency limbic oscillations couple to (i.e. entrain)
gamma in the cortex (Canolty et al., 2006; Llinds and Steriade,
2006) enabling the activity of the cortex to explain and thereby
contain the activity of the limbic regions (Engel et al., 2001;
Friston, 2003; Chen et al, 2009). In non-ordinary states, this
function may be perturbed (e.g. in the case of hallucinogenic
drugs, through actions at modulatory post-synaptic receptors)
(Aghajanian and Marek, 1997), compromising the hierarchical
organization and suppressive capacity of the intrinsic networks.

To investigate these phenomena further, neuroimaging mea-
sures of functional and effective connectivity could be employed
to assess whether e.g. phasic events in REM sleep or the halluci-
nogenic drug state correlate with an increased limbic input to
higher-level association cortices. It might transpire that in these
states, limbic discharges become capable of traversing systems,
which they are unable to do under normal conditions. For exam-
ple, it might be possible to observe limbic discharges influencing
activity in visual association areas (see Barbeau et al., 2005). One
might expect limbic activity to be suppressed by higher-level
regions of the DMN in normal waking cognition but not in
non-ordinary states. This might explain the difference between
the experience of day-dreaming in the resting-state (Mason
et al., 2007, Q284 and Q332) and hallucinosis in non-ordinary
states (Q97), where limbic activity is released from top-down
control. The mechanisms of this release have been discussed pre-
viously in terms of perceptual inference and synaptic gain (Friston,
2005b; Stephan et al., 2009), where the major determinant of
synaptic gain is neuronal synchronization.
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Table 2 Some points of contact between Freud's account of the mind and empirical findings in neurobiology

The overlapping phenomenology of REM sleep, early and acute psychosis, the temporal lobe aura and the hallucinogenic drug state.
All these states have been independently compared with each other previously and described independently as conducive to primary
process thinking.

The neurophysiology of these non-ordinary states is remarkably consistent both empirically and with Freud's descriptions of the
‘free-flowing' energy of the primary process.

LSD given immediately prior to or during sleep promotes REM sleep.

The overlap between Freud's descriptions of the give-and-take relationship between ego-libido and object-libido and the
give-and-take relationship between the DMN and its anti-correlated networks.

The concordance between Freud's descriptions of the secondary process working to minimize free-energy and the free-energy
account of the hierarchical organization of intrinsic networks working to minimize prediction errors.

The integrated, compound nature of the DMN and Freud's descriptions of the integrated, compound nature of the ego.

The development of functional connectivity between the nodes of the DMN during ontogeny, a process that parallels the
emergence of ego-functions.

Freud's account of the ego as a recipient and product of regular endogenous activity concerned with drive, memory and affect and
the functional and structural connectivity of the DMN's cortical nodes with limbic structures concerned with drive, memory and

affect.

e Freud's description of the ego as a tonic reservoir of activity and the high resting-state metabolism of the DMN.
e Freud's account of the ego as the seat of the sense-of-self and studies showing increased activity in the DMN during self-referential
processing and a failure to deactivate the DMN in pathology characterized by withdrawal.

Discussion

In this article we have explored the notion that Freud's descrip-
tions of the secondary process are consistent with the functional
anatomy of large-scale intrinsic networks. We have proposed that
intrinsic networks self-organize into hierarchical frameworks, in
order to suppress the free-energy of their subordinate levels.
This was associated with the function of the secondary process.
We hypothesized that spontaneous fluctuations in neuronal activ-
ity in cortical nodes of the DMN function to suppress or contain
otherwise anarchic and unconstrained endogenous activity in
limbic and paralimbic systems, while fluctuations in subordinate
networks anti-correlated with the DMN predict and counter pre-
diction errors induced by exogenous sensory input in sensory and
visceral systems.

Given the nature of this synthesis, different readers will find
merit in different aspects of it. For example, some readers may
see value in relating inferential coding to intrinsic networks and
regard this as a potentially useful perspective on functional anat-
omy. Others may take the formal similarity between Freudian for-
mulations and functionalist interpretations of neuronal processes
as evidence for their construct validity. For example, the remark-
able overlap between Freud's theories and modern neurobiology
may engage clinicians and academics who are more familiar with
(and receptive to) Freud's work (Table 2). Developing these points
of contact may help anchor Freudian concepts to measurable
biological phenomena and inform psychoanalytic thinking. As
has been argued previously (Kandel, 1999; Solms, 2009), this
process may be important for psychoanalysis. Furthermore, given
the enduring, albeit marginal, influence of psychoanalysis in
psychiatry, it may benefit psychiatry if psychoanalysis is properly
grounded in neuroscience. This is the agenda of the Neuro-
Psychoanalysis movement (www.neuro-psa.org.uk) and should

assist the process of separating premises that have construct valid-
ity from those which do not.

Freud's writings contain many useful heuristics for exploring
global brain function, especially in non-ordinary states of con-
sciousness. Indeed, the Freudian model owes its origins to
inferences based on unconstrained states, whereas the cognitive-
behavioural approach is uncertain in this domain (Morcom and
Fletcher, 2007). Science usually analyses phenomena extrospec-
tively but in the mind-sciences especially, certain phenomena
demand that we look both inwards and outwards - even if intro-
spection entails some compromise and a confrontation with our
'it'. Freud's theories were conceived through a study of non-
ordinary states, his schooling in neurology and a readiness to
introspect. If they were built on false inference and loose philos-
ophy, it is unlikely they would have endured in the way that they
have. For those opposed to Freud, who would rather see his con-
structs dissolved into pure phenomenology and neurobiology, we
put up little resistance (e.g. Q176). Phenomenology and neuro-
biology can stand alone. The Freudian model adds a framework
for an integrated understanding of psychopathological phenom-
ena. Once the full-character of non-ordinary states and cognition
are understood, this framework may dissolve naturally.

The synthesis attempted in this article is intended to facilitate
a more comprehensive understanding of psychological and
neurobiological phenomena; addressing topics which have hitherto
been considered incompatible with the cognitive paradigm
(e.g. Morcom and Fletcher, 2007). The Freudian model should
not impede hypothesis testing but rather facilitate it by emphasiz-
ing the importance of studying the phenomenology, neurophysiol-
ogy and neurodynamics of different modes or states of cognition;
and by indicating where we might look for anomalies. For exam-
ple, altered functional connectivity between limbic and cortical
nodes of the DMN may predict symptoms of ego-disturbance or
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primary process thinking. Identifying the neurobiological signature
of ego-disturbance or primary process thinking may provide
new insights into the pathogenesis of schizophrenia, given that
related symptoms are prevalent in the prodromal phase (Mgller
and Husby, 2000; Parnas and Handset, 2003; Hafner and Maurer,
2006). Another symptom cluster, which might benefit from
a Freudian treatment, is the withdrawal seen in depression
and schizophrenia. The association between ego-libido and
object-libido and the give-and-take between the DMN and its
anti-correlated networks may be especially relevant here:

All that we know about [libido] relates to the ego, in which at
first the whole available quota of libido is stored up. We call this
state absolute, primary narcissism. It lasts till the ego begins to
invest the ideas of objects with libido, to transform narcissistic
libido [ego-libido] into object-libido. Throughout the whole of
life the ego remains the great reservoir from which libidinal
investments are sent out to objects and into which they are
also once more withdrawn. (Freud, 1940; Q454)

The notion of displacing energy from a default store to net-
works concerned with scrutinizing the external world is consistent
with the functional relationship of the DMN to its anti-correlated
networks, where e.g. activity is displaced from the DMN to the
dorsal attention system during goal-directed cognition (Raichle
et al., 2001):

We see also, broadly speaking, an antithesis between ego-libido
and object-libido. The more of one is employed, the more the
other becomes depleted. (Freud, 1914; Q173)

It is interesting that Freud's notion of a finite ‘reservoir’ of
energy and the reciprocal patterns of activation between the
DMN and subordinate networks both fit comfortably with hierar-
chical minimization of free-energy. This minimization entails recur-
rent message-passing between hierarchical brain systems that try
to suppress the free-energy at all levels (this scheme is also called
predictive coding; e.g. Jehee and Ballard, 2009). The ensuing
dynamics mean that increased neuronal activity at one level sup-
presses neural activity encoding prediction-error in another, lead-
ing to reciprocal patterns of activation and deactivation; see
Murray et al. (2002) for a nice empirical example of this in the
visual system and Friston and Stephan (2005) for a simulation in
the auditory system. In brief, the ‘reservoir’ of free-energy is con-
stantly primed by surprising or unaccountable exchanges with the
sensorium and is distributed throughout the hierarchy in an
attempt to minimize its expression at any one level.

Recent work has shown reduced task-evoked suppressions of
DMN activity in schizophrenia (Pomarol-Clotet et al., 2008;
Whitfield-Gabrieli et al., 2009) the severity of which correlated
positively with connectivity in the DMN (Whitfield-Gabrieli
et al., 2009). These findings support the observation that there
is a reduced engagement with the external world in schizophrenia
(see Table 1, row 9 and especially Q168 and Q170). In this article
we have proposed that the brain’s functional anatomy is organized
hierarchically to ensure that free-energy is minimized in the most
efficient way. Organized in this manner, the brain explains internal
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and external events and effectively discriminates between them.
However, assuming that the development and maintenance of
this organization is use-dependent, it will be jeopardized if the
individual withdrawals from the external world. If the brain’s hier-
archical organization begins to breakdown, there may be an ensu-
ing confusion over, among other things, what are internal and
external sensations. This may be especially relevant during pub-
erty, when the ego is forced to negotiate new demands from
internal and external sources and through this, develop an adult
ego. According to our model, the development of an adult ego
(a properly functional DMN) is necessary to contain internal
excitations and coordinate engagements with the external world.
If this is not achieved, systems normally inhibited by the DMN
(e.g. the salience system) may slip from its control. In the ensuing
chaos, the patient may develop delusions as a compromise strat-
egy for containing the increase in free-energy. Thus, from the
free-energy perspective, withdrawal, psychomotor poverty and
delusional thinking may be last resorts for someone who finds
everything surprizing and unpredictable. See Fletcher and Frith
(2009) and Corlett et al. (2009) for a free-energy (predictive
coding) treatment of false inference in schizophrenia.

As in schizophrenia, Freud recognized that a retreat from the
external world is also characteristic of depression. In depression
however, emphasis was laid on a loss of an intense object-love.
Freud argued that the patient reacts to this loss by targeting the
aggression felt towards the lost object back upon his/her own ego:

There is no difficulty in reconstructing [the] process of [melan-
cholia]. An object-choice, an attachment of the libido to a par-
ticular person, had at one time existed; then, owing to a real
slight or disappointment coming from this loved person, the
object-relationship was shattered...But the free libido was not
displaced on to another object; it was withdrawn into the
ego...Thus the shadow of the object fell upon the ego and
the latter could henceforth be judged by a special agency, as
though it were the forsaken object...One or two things may be
directly inferred with regards to the preconditions and effects of
a process such as this. On the one hand, a strong fixation to the
loved object must have been present; on the other hand, in
contradiction to this, the object-[investment] must have had
little power of resistance...This contradiction seems to imply
that the object-choice had been effected on a narcissistic
basis, so that the object-[investment], when obstacles [came]
in its way, [could] regress to narcissism. (Freud, 1917b, Q267)

As in schizophrenia, recent work has shown a reduced
task-induced suppression of DMN activity in depression (Grimm
et al., 2009; Sheline et al., 2009) and these reductions correlated
positively with depression severity and ratings of hopelessness
(Grimm et al., 2009). Reduced blood flow and activation in the
dorsolateral prefrontal cortex and hyper-perfusion, metabolism
and activity in limbic and medial prefrontal regions are also reliably
associated with depression (e.g. Mayberg et al., 2005, 2007;
Drevets et al., 2008). These findings support the notion of a with-
drawal from the external world and a pathological self-focus in
depression, consistent with the Freudian account (Table 1, row 9).
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Conclusion

The first section of this article reviewed evidence that the devel-
opment and functioning of the DMN and its functional relation-
ship with its anti-correlated networks is consistent with that of the
ego. In the second we described the phenomenology of primary
process thinking, reviewed evidence that it can be observed in
certain non-ordinary states and cited studies indicating that
these states share a common neurophysiology. In the final section
we sought to justify the synthesis and show how reference to the
Freudian model might be used to understand clinically relevant
phenomena in neurobiological terms.

This article does not address the efficacy of psychoanalysis as a
treatment (see Fonagy, 2003 for a relevant review and Q478).
Our focus is on the validity of Freudian constructs in relation to
global phenomena and related theories that have recently
emerged in systems neuroscience.

Finally, this synthesis was compelled by the links between psy-
chopathology and the neurophysiology of certain non-ordinary
states of consciousness, and between the functional organization
of intrinsic brain networks and the secondary process as described
by Freud. The synthesis is empirically-led, as are the methods we
recommend for testing and applying it. The neurobiological phe-
nomena addressed in this synthesis are central topics in contem-
porary neuroscience and the Freudian concepts are principal
components of his model, where these components can be
traced to his schooling in neurology and the influence of people
like Meynert, Helmholtz, Fechner, Hering, Herbart, Charcot and
Hughlings-Jackson.
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