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Abstract

Do the consequences of past behavior alter future policy, as
the law of effect assumes? Or, are behavioral policies based on
behaviorally produced information about the state of the
world, but not themselves subject to change? In the first case,
stable policies are equilibria discovered by trial and error, so
adjustments to abrupt changes in the environment must
proceed slowly. In the second, adjustments can be as abrupt as
the environmental changes. Matching behavior is the robust
tendency of subjects to match the relative time and effort they
invest in different foraging options to the relative incomes
derived from them. Measurement of the time course of
adjustments to step changes in the reward-scheduling
environment show that adjustments can be as abrupt as the
changes that drives them, and can occur with the minimum
possible latency. Broader implications for theories about the
role of experience in behavior are discussed.

Economists and psychologists commonly assume that behavior is
shaped by its consequences. Psychologists call this the law of effect,
by which they understand that we and other animals try different
behaviors, assess their effects, and do more of those with better
effects and less with those with worse. On this view, the behaviorally
important consequence of a behavior is the information it provides
about behavioral outcomes. The effect of the information is to alter
policy.

There is, however, a different way in which the consequences
of behavior may shape future behavior. Some policies depend for
their execution on information about the state of the world.
Changing the information fed to a policy changes the behavior it
generates. Because behavior generates information about the state
of the world, the effects of past behavior may alter future behavior
by changing the model of the world that a fixed policy takes as
input.
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Attempts to distinguish between these possibilities are rare.
Three collaborators and I (Gallistel, Mark et al. 2001) have recently
distinguished between them in the studying the genesis of matching
behavior, which is the robust tendency of animals, human and
otherwise, to prorate their behavioral investments in different
foraging options so that the investment proportions match the
income proportions (Herrnstein 1961; Harper 1982; Godin and
Keenleyside 1984; Davison and McCarthy 1988; Herrnstein 1991). If
the subject gets 2/3 of its income from foraging in one location and
1/3 from foraging in another, then it spends 2/3 of its foraging time
in the first and 1/3 in the other.

In the laboratory, matching behavior is most commonly
studied using what is called free operant behavior with concurrent
variable interval schedules of reinforcement. In this paradigm,
subjects have two different reward-generating response options.
Typically, if they are pigeons, the options are two different keys,
either of which may be pecked; if they are rats, the options are two
different levers, either of which may be pressed. The rewards for
pecking or pressing are typically small amounts of food. The
behaviors are called free operants because they operate on the
environment to produce reward and because the subject's
opportunity to engage in them is not constrained. Subjects can make
either response whenever they like!. A schedule of reinforcement is
the experimenter-determined function relating investment to
reward. In a variable interval schedule, the next reward delivered by
a response on one of the two options is set up at a randomly varied
interval after the harvesting of the last reward from that option.
Once set up, the reward remains available until it is harvested by
the next response. The expected interval to the next set-up
distinguishes one variable interval schedule from another. The
schedules for the two response options are concurrent when they
run in parallel, with the timers for both schedules running
regardless of which option the subject is exercising at the moment.

The fact that the reward-scheduling function is called a
schedule of reinforcement suggests the extent to which the law of
effect is taken for granted by psychologists. It is assumed that

", For matching to occur, a minimal amount of time (on the order of a second or two)
must be lost in shifting between the options. Otherwise, subjects can in effect exercise
both options at once (play both machines simultaneously), which is what they do.
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rewards act to strengthen rewarded behaviors, that is, to make them
relatively more likely to occur. In a purely descriptive sense, of
course, they do: the shorter the expected set-up interval for one
schedule is, relative to the other, the more likely it is that at any
given moment the subject will be investing in that option.

It does not follow, however, that the schedule of reinforcement
affects the subject's behavior by way of an effect on the subject's
policy. Subjects may have a fixed policy for translating relative
expected incomes into relative investments. In that case, what they
get from responding is not policy guidance but rather an estimate of
the income to be expected. The income from an option is the
amount of reward it yields per unit of time tout court—not per unit
of time invested. Provided that the subject samples an option at
intervals that are on average shorter than the expected interval to
the next reward, the income from a variable interval schedule is
only weakly affected by the size of the subject's investment. In
short, to experience the income from an option a subject must
spend some time exercising that option, but, within broad limits, the
amount of time it spends has little effect on the income it yields.
The subject's behavior reveals, so to speak, the income that may be
obtained from a given option.

There is some reason to think that matching might be an
innate policy, because both human and pigeon subjects pursue it
even under circumstances where it is the worst policy, the policy
that minimizes their overall return (Herrnstein 1991). At the very
least, this implies that there are limits to the ability of response
consequences to shape policy.

Two Contrasting Accounts

One of the attractions of addressing the issue of the role of past
behavioral consequences in the determination of future behavior by
considering the matching phenomenon is that it permits a clear
formulation of the alternative accounts. The first account involves
what Herrnstein called melioration, which is "the process of
comparing the rates of return and shifting toward the alternative
that is currently yielding the better return" (Herrnstein and Prelec
1991, p. 361). Some version of this idea has been the basis for most
attempts to explain matching behavior, although none of these
attempts has succeeded in specifying the details in such a way as to
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yield a model that captures the details of the behavior (Lea and
Dow 1984; Herrnstein and Prelec 1991). A particularly vexing
problem has been the specification of the interval over which
subjects average when estimating their returns. The wider this
averaging window, the more slowly subjects will approach the new
stable equilibrium when the relative richness of the schedules
changes. Melioration models have never been able to specify an
empirically defensible averaging window (Lea and Dow 1984).

What melioration models have in common is the assumption
that matching is not itself the policy. The policy is whatever
melioration leads to. Matching is what melioration leads to when
there are variable interval schedules of reinforcement, because in
that environment, matching equates returns. Because subjects
sample both options at intervals shorter than the expected intervals
between rewards, the income-limiting factor is the expected set-up
interval of the schedule. Increasing or decreasing the expected
duration of a visit—hence, the average investment in an option—has
little effect on the income realized from it. Return is income divided
by investment. Therefore, increasing the investment in the richer
option and decreasing the investment in the poorer decreases the
return from the richer and increases the return from the poorer.
When the investment ratio matches the income ratio, the returns are
equal. Matching is the dynamic equilibrium point, the point at
which the consequences of behavior (the returns) do not favor a
shift toward either option. Any drift away from this point, produces
a countervailing inequality in returns, which drives the behavior
back toward matching.

The alternative account assumes that matching is the policy
and that it is an immutable policy (Gallistel and Gibbon 2000;
Gallistel, Mark et al. 2001). In accord with the experimental findings
on the microstructure of matching behavior (Heyman 1979; Gibbon
1995), this model assumes that visits to the options are terminated
by a Poisson (random rate) process. When a visit has begun,
subjects, in effect, repeatedly flip a biased coin to decide when to
leave (that is, to temporarily stop exercising the option). When the
coin comes up heads, they leave. This assumption has two
consequences: First, the distribution of visit durations should be
exponential, which it is (Heyman 1979; Gibbon 1995). This is odd if
one believes that the function relating behavior to its consequences
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shapes behavior, because the reward for trying an option becomes
more certain the longer a subject has neglected it. Thus, the
probability of terminating a visit to try the other option should
increase as the visit is prolonged; the longer the subject has been
there, the more likely it should be to leave. This, however, is
empirically false; the probabilty of terminating a visit does not
change as the visit is prolonged, which is why visit durations are
exponentially distributed.

2) The expected duration of a visit is determined by the bias
on the coin, the rate at which it comes up heads. This parameter of
the subject's behavior is assumed to be determined by its estimates
of the expected incomes from the available options in accord with
the following two equations:

E(d)[E(dy)= H [H, (1)

and

= a(Hy + Hy)+b (2)

! +
E(d)) E(dy)

A A

1 ~ H 1 ~
=(1H2+b,\ 2A and =(1H1+b,\ 1A
E(dl) Hl +H2 E(dz) Hl +H2

whence

where H; is the subject’s estimate of the income to be expected from
option i. and E(d;) is the expected duration of a visit to option i. The
policy consists in setting the bias of the coin for a given side so that
the rate at which it comes up heads is given by (3). As indicated in
(3), these leaving rates are the reciprocals of the expected visit
durations.

Equation (1) sets the ratio of the expected stay durations for
the two options equal to the ratio of the estimated incomes. It builds
matching into the policy. Equation (2) makes the sum of the leaving
rates on the two sides a linear function of the sum of the incomes.
The greater is the combined income, the higher are both leaving
rates, and the shorter are the expected stay durations. This is known
to be empirically true (Gallistel, Mark et al. 2001). And, it makes
functional sense, because it means that the rate at which a subject
cycles between the options is adjusted in accord with the expected
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interval between rewards from the two options combined. In
impoverished environments, where rewards come infrequently, the
subject cycles slowly; in rich environments, it cycles rapidly. Its rate
of cycling is adjusted to the expected interval between rewards so
that the schedules remain the income-limiting factor.

In summary, on the first account, the subject's model of the
world is maximally simple: It consists only of the labels that
distinguish the response options. The subject's policy is defined by
the probabilities of its engaging in those two options. Pursuing this
policy yields over time estimates of the returns from the two options
of experimental interest: the rewards received divided by the time
invested in obtaining those rewards. The policy-adjustment rule (the
learning rule) is melioration: increase the probability for the option
with the greater return and decrease the probability for the option
with the smaller return. In an environment where the investment is
not the income-limiting factor, meliorating eventually equates the
returns, bringing the behavioral system to an equilibrium state. On
this account, matching is not a strategy that is specified a priori; it is
the outcome of a feedback process. Therefore, it cannot be attained
abruptly. It cannot happen in less time than it takes to obtain
reliable information about the returns to be expected from policies
intermediate between the initial policy and the equilibrium policy,
because the system must adopt those intermediate policies and
evaluate their returns en route to the equilibrium state.

On the second account, the subject has a more complex model
of the world: it has experience-derived estimates of the incomes
currently to be expected from rapidly sampling those options. The
critical experiential variable associated with an option is expected
income, not return, that is, rewards per unit of foraging time, not
rewards per unit of time invested in that option. Note that in the
computation of income, the behavioral investment that generated it
plays no role, whereas in the computation of return, the behavioral
investment is the denominator.

When this system learns, what changes are its estimates of the
expected incomes, not its policy. (More will be said later about how
the estimates depend on experience, that is, about the learning
rule.) This system has no policy-changing rule. It shifts investment
back and forth between the options according to a fixed rule, which
takes as its input the estimates of currently expected incomes. These
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estimates determine the parameters of the stochastic process that
terminates visits (limits the expected duration of an investment in
an option). Matching in this system is purely feed-forward. Hence,
nothing limits the abruptness with which behavior can shift from
one stable investment pattern to another. A large step change in the
estimates of the currently expected incomes can produce an equally
large and equally step-like change in expected visit durations. The
latency between a step change in the environment (the reward
schedules) and the answering change in behavior are determined by
the properties of the income estimator (the learning mechanism).
The more efficient this estimator is, the shorter the latencies will be.

A Critical Experiment

We (Gallistel, Mark et al. 2001) determined which kind of
process—feedback or feedforward—mediates matching by
measuring the time course of the behavioral adjustment to step
changes in the schedules of reward. As just noted, the feedforward
account allows for these adjustments to occur with step-like
abruptness, at a latency determined only by the efficiency with
which the income-estimating mechanism can detect changes in the
expected incomes. By contrast, a feedback process like melioration
cannot adjust abruptly, because matching is the result of a process
of equilibration. To get from the pre-change equilibrium to the post-
change equilibrium, the process must spend enough time in several
intermediate states to obtain reliable (option-differentiating)
estimates of the returns. How long it spends in these intermediate
states and how many of them there are depend on the width of the
return-averaging windows and the magnitudes of the policy
adjustments following each assessment of relative returns. As
already noted, an empirically successful specification of these
dynamic parameters has eluded attempts to elaborate a model of
matching based on melioration. For present purposes, however, it
does not matter what values these dynamic parameters might be
assumed to have. No assessment of relative returns can be made
until the subject has tried both options at least once. Estimates of
return based on single visits are extremely noisy (Gallistel, Mark et
al. 2001, Fig 14). If the subject made adjustments to its option
probabilities based on the relative returns from single visits, the
adjustments would often be in the wrong direction (opposite the
direction dictated by the true values of the expected returns). Thus,
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if subjects use a maximally narrow window for estimating returns,
they will often waste time moving in the wrong direction in policy
space. If, to avoid this, they get more reliable estimates of the
expected returns by widening their averaging windows, it will take
more time to obtain those estimates. Either way, it seems
inescapable that the shift from one equilibrium to a radically
different one can only proceed slowly; the change must be spread
over a great many Vvisit cycles.

The subjects in our experiment were rats with electrodes
implanted in their brains at a locus that produces an intense, non-
satiating rewarding experience. (For the latest theorizing about the
relation of that experience to naturally occurring experience, see
Shizgal 1997). The environment was a Plexiglas box with two levers.
They were located in the recesses of two different alcoves, so that it
took the rats at least a second and a half to shift from one lever to
the other. Holding down the levers generated rewards on
concurrent, independent variable interval schedules. The subjects
were tested in daily two-hour sessions.

The experiment had several phases, but in the phase of
interest here, we used five pairs of schedules (VI 7.1-s/VI 62.5-s, VI
8.55-s/VI 25.64-s, VI 12.82-s/VI 12.82-s, VI 25.64-s/VI 8.55-s, and VI
62.5-s/VI 7.1 s). All pairs summed to the same overall rate. The
corresponding ratios of scheduled rates of reward were: 9/1, 3/1,
1/1, 1/3, and 1/9. The sum of the scheduled rates in each pair (the
sum of the reciprocals of the VI’s) is 9.4 rewards per minute.
Because the scheduled rates were the primary determinants of the
rates of rewards actually experienced, the overall rate of
experienced reward was approximately the same regardless of which
pair of schedules was in effect.

In the phase of interest here, the pair of schedules in force at
the beginning of each session could not be predicted from the pair
in force at the end of the preceding session. Moreover, at an
unsignaled point somewhere in the middle 80 minutes of each 2-
hour session, the schedules initially in force were replaced by a
different and equally unpredictable pair. Thus, subjects in this
phase encountered frequent and unpredictable step changes in the
relative rates of reward permitted by the two schedules, both
between and within sessions. Some of these changes were large;
some were small. The questions are, how abruptly did subjects
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adjust to these changes and how long did it take for these
adjustments to appear? We focused particularly on the within-
session changes, because they were unsignaled: the subject had no
way of judging when a change had occurred except by processing
the sequence of experienced rewards.

The changes we observed were abrupt, as can be shown by two
different graphic displays. In the first (Figure 1), we plotted the
cumulative duration of the visits to one side against the cumulative
duration of the visits to the other. The slope of this cum-cum plot at
any point is the ratio of the average visit durations at that point. A
change in the slope indicates a change in the expected durations of
the visits to the two levers. Abrupt changes in the expected
durations of the visits give rise to sharply defined inflection points
in the cum-cum function. The examples in Figure 1, which are
representative of the more than 100 within-session transitions we
observed in this phase of the experiment, are extremely abrupt. The
insets show the function at a visit-cycle-by-visit-cycle level of
resolution; successive points are the cumulative durations at the
conclusion of successive visit cycles. From the insets, it may be seen
that the transition from one stable set of expected visit durations to
a very different stable set often occurred over a span of fewer than
5 visit cycles. Sometimes, the entire transition appeared to occur
within a single visit cycle.

In the second way of showing the time-course of the
transitions (Figure 2), we used a Bayesian model to calculate the
probability density functions for the estimates of the two reward
rates and for the estimates of the two leaving rates. The probability
density functions for the estimates of the reward rates were
calculated after the delivery of each reward. The probability density
functions for the estimates of the two leaving rates were calculated
at the conclusion of each visit cycle. The Bayesian estimator "knew"
a priori that there would be a step change in each pair of rates at
some point. Thus, it calculated not only successive probability
density functions for each estimate but also the probability that the
change had occurred. The calculation was structured in such a way
that a probability density function for a rate estimate did not
necessarily take into account all of the data up to that point in the
session. When the data indicated with high probability that the
change in rates had occurred at an earlier point in the session, a
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probability density function only took into account the data since
the estimated change point. Because this sophisticated estimator did
not use an averaging window, step changes in the parameters being
estimated gave step changes in the location of the probability
density functions for the estimates, as may be seen in Figure 2.

The most important thing to note in Figure 2 is that the
changes in the location of the probability density functions for the
estimates of the rats' leaving rates are just as step-like as the
changes in the locations of the probability density functions for the
estimates of the reward rates. We know that the latter changes were
steps. Thus, the observed change in expected visit durations was as
abrupt as a known-to-be step change in the expected incomes.

The central conclusion from this experiment for present
purposes is that when there is a step change in the environmental
forcing function, the resulting change in matching behavior is much
more abrupt than would be possible if matching were the
equilibrium state of a system that adjusts its policy on the basis of
the effects of that policy on the relative returns. The behavioral
changes approximate steps. Whatever the process is that produces
matching, it must be capable of producing step changes in the
expected visit durations in response to step changes in the
environment.

It is of interest to know not only how abrupt the behavioral
changes are but also what their latency is. How quickly do rats
detect changes in the expected incomes from the options they are
sampling? To answer this question, we compared the rat's behavior
to the behavior of a Bayesian ideal detector. The above-described
Bayesian estimator for the reward rates and leaving rates also gave a
probability density function for the temporal location of the change-
point (probability density versus session time). We took the location
of the mode of the probability density function for the behavioral
change point as the point in the session at which the behavioral
change was maximally likely to have occurred. We then applied our
Bayesian change detector to the sequence of experienced rewards to
calculate the probability that the (anticipated) change in the reward
rates had occurred, as of that moment in the session. Figure 3 is the
histogram of the results of this calculation. What it shows is that the
changes in behavior occurred as soon as there was any appreciable
likelihood that the reward rates had changed. The rats could not
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have adjusted any sooner if they had been getting real-time advice
from a professional statistician. They approximated ideal detectors
of changes in rates of reward. Although the rat is seemingly blind to
the consequences of its own behavior, it is exquisitely sensitive to
the state-of-the world revealed through that behavior.

The Learning Rule

The locus of learning in a feedforward model is in the processes that
update its model of the world. Changes in the parameter estimates
in this model produce changes in behavior. The learning rule my
collaborators and I proposed has two components—one for
detecting changes in incomes and one for estimating the incomes
currently expected.

Detecting a change in a random rate process is equivalent to
detecting an inflection point in the cumulative record of the events
it has generated (Figure 4). When the rate is constant, the slope of
the cumulative record is constant; when it changes, the slope
changes. The detection of an inflection point proceeds in two steps.
First, as each new event is added to the cumulative record, the
system estimates the putative inflection point, which is the past
event at which a change in slope, if such there be, most likely
occurred. From purely geometric considerations, this event must be
at or close to the event at which the cumulative record deviates
maximally from a straight line from the origin of the record to the
point on the record corresponding to the current moment (the
dashed line in Figure 4). The slope of this line is N/ T, where N is the
event count at the moment and T is the duration of observation (the
interval over which events have been counted). In other words, it is
the estimate of the rate parameter, on the assumption that it has
been constant. The point on the cumulative record that deviates
farthest from this line is the putative inflection point.

The second stage of the change-point detecting algorithm
calculates the log of the odds against the null hypothesis that there
has been no change in the rate. On the null hypothesis that the N
recorded events have been randomly distributed in time, the
probability, p., that any one of them (ignoring event order) falls in
the interval 7, is 7,/T. The probability P of observing N, or fewer

events in N "tries" is given by the cumulative binomial probability
function, as is the probability P, of observing N, or more events.
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When the number of events in T, is approximately the expected
number (p. N), then the ratio P /P, is approximately 1, so the log of

this ratio is approximately 0. As the observed number of events
since the putative time of change becomes improbably low, the ratio
becomes very small, and its log approaches minus infinity. As the
observed number becomes improbably high, the ratio becomes very
large, and its log approaches infinity. The absolute value of the log
of this ratio (the logit?) is the subject's measure of the strength of
the evidence that there has been a change in rate. When this
decision variable exceeds a critical value, the subject perceives a
change. When it perceives a change, it truncates the data at the
moment the change is perceived to have occurred (the moment ¢, in

Figure 4). The data on which the next perception of a change in rate
is based are only those after this moment.

This algorithm is our model of the component that detects
changes in rates. It reports not only that a change has occurred but
also when in the past it is most likely to have occurred, namely, at
the putative inflection point. Our model of the component that
estimates the current rate is simple: The moment at which a change
in rate is detected is always later than the estimate that the
algorithm gives for the moment at which the change occurred. The
estimate at that moment of the currently prevailing rate is the
number of events recorded since the estimated change-point
divided by the interval between that point and the point where the
change was detected. If, as can happen, there is no event in that
interval, the default value for the event count is 1. In this model, the
estimates of the current rates of reward are not the result of
running averages; there is no averaging window. They are based on
the small sample of events observed in the interval backward from
the time at which a change was last detected to the time at which it
was estimated to have occurred.

Because there is no averaging window in this model, it is time-
scale invariant. It works equally well regardless of the time scale set

> The logit is usually defined to be the ratio of two complementary probabilities. Our ratio
is between two overlapping probabilities, which therefore do not sum to 1. We use
overlapping probabilities because the resulting measure is better behaved when the
expected and observed numbers of events are the same and near or equal to zero. Away
from unity or when the expected number of events is >> 0, our ratio approximates the
usual ratio.
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by the rates of event occurrence. Models with averaging windows,
which is to say most other models for matching (Lea & Dow, 1984;
Staddon, 1988), impose a time scale when they specify the width of
the averaging window. The model then works only for events on
that time scale. To get these models to work under more general
conditions, one needs to have many different averaging windows.
This then poses the problem of deciding which window is
appropriate for the current circumstance. For a discussion of the
importance of time-scale invariance in learning, see (Gallistel and
Gibbon 2000; Gallistel and Gibbon 2002).

This completes the specification of the learning rule in our
feedforward model of matching. Whether the model proves in the
long run to be right or not, it serves to illustrate the distinction
between systems that obey the law of effect and systems that merely
appear to do so. The differences between the two kinds of systems
tend to be dramatic because the locus of learning is fundamentally
different. In the second kind of model, fixed policies depend on
models of the state of the world. In the first kind (policy-changing
learning rules), flexible experience-derived policies reduce the need
for models of the world, which is why this kind of model is
preferred by the partisans of empiricist theories of mind. To the
empiricist school of thought, the nativism and rationalism implicit
in the computations required to generate a good model of relevant
aspects of the world are uncongenial, as is the assumption that
behavior is generated by innate and more or less immutable
policies.

Diverse Reasons Why Matching Is a Good Policy

If matching is an innate and immutable policy seen in the behavior
of a wide range of broadly successful animal species, then one tends
to assume that it must be, all things considered, a good policy. For
the case we have been considering—concurrent variable interval
schedules—it has been shown to be not the optimal policy but to be
so nearly optimal as not to matter from a practical standpoint
(Heyman and Luce 1979). In this environment, the animal increases
its total income by sampling the poorer option because the very
small cost of this sampling in terms of a reduced income from the
better option are more than offset by the additional income realized
from the visits to the poorer option. In appreciating why this is so, it
is crucial to remember two points: First, the longer the subject has
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been away from a poor option, the more likely it is to have a reward
waiting to be harvested. Thus, rare visits are strongly rewarded.
Second, if animals cycle rapidly enough between the options, then
the schedules are income limiting, not the investments. Thus, the
reduction in the investment in the richer alternative has little effect
on the income realized from it.

But this is only one environment and arguably a very artificial
one. What about other environments? What about, for example,
environments in which the investment is the income-limiting factor?
In such environments, putting all of one's investment in the option
that pays off more frequently is the best thing to do. Somewhat
surprisingly, the matching policy yields this result in this
environment, as was first realized by Herrnstein and Loveland
(1975). In the laboratory, this environment is implemented with
concurrent variable ratio schedules. A variable ratio schedule looks
not at the time that has elapsed since the last reward was harvested
but rather at the number of responses that have been made. In
other words, it rewards investment at some random rate. Variable
ratio schedules differ in the rate at which investment is rewarded.
Under these conditions, investment in an option rewarded at a
lower rate is counterproductive. Asymptotically, subjects do not
invest in the poorer option. They spend all their time investing in
the better one.

In such an environment, there is a destabilizing positive
feedback between the environment and the matching policy.
Whenever the subject increases its investment in the richer option
and reduces its investment in the poorer, the difference in the
incomes realized becomes greater than it was before the change in
behavior. The income ratio, as a proportion of total income, keeps
ahead of the investment ratio, as a proportion of total investment,
until both ratios reach 1. To see this, one must recall that the
income is the number of rewards experienced divided by the time
over which they were experienced, not by the time invested in the
option. The more a subject reduces its investment in a variable ratio
schedule—that is the less frequently it tries that option—the fewer
the rewards realized from it. It is a matter of simple algebra to show
that the only point in behavioral space at which the subject's
relative investment in the better option equals its relative income
from that option is when it invests all of its time in that option
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(Herrnstein and Loveland 1975). In other words, the matching
policy leads to maximizing behavior in (at least some) environments
where that is the optimal behavior.

It would probably strike an economist that one of the most
artificial (unnatural) aspects of the common laboratory paradigm is
the lack of competition; the subject is in the environment by itself,
with no competitors. Central to an economic perspective is that
foraging for goods is a competitive activity; the optimal strategy
depends fundamentally on an estimate of what your competitors
may be expected to do. Interestingly, matching has been shown to
be an evolutionarily stable strategy for a community of ideal free
competitive foragers (Fretwell and Lucas 1969; Orians 1969).

An ideal forager has accurate knowledge of the relative
richness of the available environments. A free forager is one whose
access to those environments is not effectively blocked by other
foragers. To say that matching is an evolutionarily stable strategy is
to say that: 1) The adoption of the strategy by the community of as
a whole does not create a selection pressure favoring an alternative
strategy, and 2) Competitors that adopt a divergent strategy are
selected against. Roughly speaking, the reasons for this are the same
as those that make matching the equilibrium policy for the
melioration process: Matching distributes the foragers across the
environment in such a way that the number of foragers per
available reward is everywhere the same. It equates return per local
forager across locations that differ in richness (or, at least, the
opportunity to earn a return).

A third reason why matching is a good policy has to do with
sampling considerations. In a world where what was a poor option
yesterday may be the best option today, a good policy never stops
sampling the options. Matching based on income estimates has that
property; the estimated income from an option cannot go to zero in
a finite period of observation, because the upper limit on the
estimate is one over the observation time. Thus, even options that
have never paid off get sampled, albeit with ever decreasing
frequency.

Sampling considerations may also be relevant to
understanding the otherwise puzzling fact that visit durations (the
durations of individual investments) are exponentially distributed,
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which means that the probability of winding up a visit in order to
try the other option is independent of the duration of the visit.
Because the world is only observable one small part at a
time—because the animal can only exercise one option at any one
time—estimating the temporal structure of the income schedule for
an option is no small challenge. Not all options pay off in the
random ways so far considered. Some pay off at predictable
intervals. We know that animals are sensitive to temporal
predictability (see Gallistel and Gibbon 2002, for review and
modeling; Gallistel 2003). When a time series is sampled
periodically, the sampling may introduce bogus temporal structure.
This is the phenomenon of aliasing, which is most familiar through
its effects on the apparent direction of wagon wheel rotation in old
films. Aperiodic sampling prevents aliasing, and sampling through
an exponential distribution of inter-sample intervals is aperiodic,
because a sample is equally likely to be taken at any moment.

Why Innate Policies May Be Better than Learned Policies

As the above discussion shows, diverse considerations affect what is
the best policy to follow in a complicated world. It is hard to know
even what all the important considerations are. It may be true that
if one uses trial and error to find the return-maximizing policy and
if one evaluates returns over many different time windows, then one
will eventually converge on the policy that is optimal policy for the
world as it really is. However, it may take a very long time to
converge on that policy (Wolpert and Macready 1997), and, in the
long run, we're all dead. Environments change--on many different
time scales, including time scales longer than a subject's lifetime.
Some policies work superbly in some environments and disastrously
in others, but you may not know when you've moved from one
environment to the other until it's too late. To survive for
generation after generation, animal species need policies that work
better than most others in most environments actually encountered,
and that are not disastrous in any environment with a non-
negligible probability. It may take much more than one lifetime to
accumulate enough experience to arrive at such policies by trial and
error, even intelligent trial and error (Wolpert and Macready 1997).
That may be why the policies animals follow are built in rather than
shaped by their experience. Because they have served animals like



Gallistel: Deconstructing law of effect Page 17

that well for tens of thousands of generations, they embody the
wisdom of the ages.
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Figure Captions

Figure 1. Six examples of abrupt behavioral change in response to a
step change in the schedules of reward: The cumulative duration of
the visits on Side 1 plotted against the cumulative duration of the
visits to Side 2. The slope of this plot at any point is the ratio of the
expected visit durations at that point. Abrupt changes in slope
indicate abrupt changes in the ratio of these expectations. The thin
lines with ratios near them (e.g., 1:1) indicate the ratios of the
programmed rates of reward. When the plot parallels this line, the
subject is approximately matching. The insets show the plots in the
vicinity of the abrupt slope changes on a visit- by-visit scale. Each
data point marks the end of a visit cycle (one visit to each side). The
gray vertical lines on the main plots and the gray squares on the
insets indicate the point at which the reward schedules changed (the
step change in the environmental forcing function).

Figure 2. Probability density functions for the estimates of the rates
of reward on the two sites (left two plots) and for the leaving or
departure rates from each side (right plots) versus session time. The
expected visit duration for a side is the inverse of the departure rate
for that side. Notice that the change in the location of the pdfs for
the behavioral estimates are just as step-like as the changes in the
estimates for the reward rates.

Figure 3. Histogram showing results of calculation in which, for each
of more than 100 change sessions, we took the mode of the
probability density function for the behavioral change (the time in
the session at which the behavioral change was maximally likely to
have occurred) and calculated what the probability was at that
point in the session that the reward rate had changed. Most of the
behavioral changes occurred while this probability was still low, that
is, they occurred as soon as there was any evidence for a change in
reward rates.

Figure 4. Detecting a change in the rate parameter of a random rate
process is equivalent to detecting a change in the slope of the
cumulative record of the events generated by that process (event
count versus elapsed time). This diagram shows the quantities
involved in the computation. For the computation itself, see text.
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